WRNK-406/436/496 Sleeve flange type sheathed thermocouple

Working principle

The working principle of sheathed thermocouple is that two ends of two different components of conductor are welded to form a circuit, and the direct measuring end is called the measuring end, and the terminal is called the reference end. When there is a temperature difference between the measuring end and the reference end, a thermal current will be generated in the circuit. When the display instrument is connected, the corresponding thermoelectric temperature value generated by the thermocouple will be indicated on the instrument.

The thermoelectric potential of the sheathed thermocouple will increase with the temperature of the measuring end. The thermoelectric potential is only related to the material of the armored thermocouple conductor and the temperature of both ends, and has nothing to do with the length and diameter of the thermoelectric pole.

The structure of sheathed thermocouple is made of conductor, insulating oxidation mold and lcr18ni9ti stainless steel protective tube. Sheathed thermocouple products are mainly composed of junction box, terminal and sheathed thermocouple, and equipped with various fixed devices.

Product structure

The structure of the sheathed thermocouple is the same as that of the conventional assembled thermocouple except that the temperature measuring element, insulating material and protective sleeve in the five parts form the whole armor. 

Sheath material (temperature measuring element, insulating material and protective sleeve): temperature measuring element means positive and negative two thermocouple wires for thermocouples. Magnesium oxide is used as insulating material between each thermocouple wire and between each thermocouple wire and the protective sleeve; metal tube is used to protect the insulating material and temperature measuring element. The sheath material technology makes the temperature measuring element, insulating material and protective sleeve become a non detachable and flexible compact entity. The sheath material is the base material for manufacturing sheathed thermocouples. The sheathed material cannot be directly used for measurement and construction. It can only be used as the base sheathed thermocouple after the measurement end and simple terminal are made.  

Material structure
☆Material structure of sheathed thermocouple ☆Measurement end (hot end) structure

 

Technical indicators

Diameter and relevant parameters

Outer diameter of tube

8.0 6.0 5.0 4.0 3.0

Tube thickness

0.8~1.2 0.6~0.9 0.5~0.8 0.4~0.6 0.3~0.45

Thermocouple wire diameter

K、N、E、J、T 1.2~1.4 0.9~1.0 0.7~0.9 0.55~0.6 0.45~0.6
S、R、B 0.45 0.45 0.45 0.4 0.3

Recommended operating temperature 

Type

Graduation

Tube material

Outer diameter

Operation temperature

 Long term service temperature

Short term service temperature

Sheathed Ni-Cr –Ni-Si

K 1Cr18Ni9Ti φ3 φ4 600 700
φ5 φ6 700 800
φ8 800 850
GH3030 φ3 800 900
φ4 φ5 900 1000
φ6 φ8 1000 1100

Sheathed Ni-Cr-Si –Ni-Si

N 1Cr18Ni9Ti φ3 800 900
φ4 φ5 φ6 900 1000
φ8 1000 1100
GH3030 φ3 900 1000
φ4 φ5 1000 1100
φ6 φ8 1100 1200
GH3039 φ3 φ4 1000 1100
φ5 φ6 φ8 1100 1200

Sheathed Ni-Cr –Cu-Ni

E 1Cr18Ni9Ti φ3 350 450
φ4 φ5 φ6 φ8 450 550

Sheathed Fe- Cu-Ni

J 1Cr18Ni9Ti φ3 300/td> 400
φ4 φ5 φ6 φ8 400 500

Sheathed Cu-Cu-Ni

T 1Cr18Ni9Ti φ3 φ4 φ5 200 250
φ6 φ8 250 300
φ5 φ6 φ8 1100  

 

Model representation

Type

Model code 

Graduation

Output

Wiring device

Simplex Ni-Cr –Ni-Si

WRNK-406         K

Directly output

Simple terminal board

Duplex Ni-Cr –Ni-Si

WRNK2-406

Simplex Ni-Cr –Ni-Si

WRNKB-406

4~20mA output

Duplex Ni-Cr –Ni-Si

WRNKB2-406

Simplex Ni-Cr –Ni-Si

WREK-406         E

Directly output

Duplex Ni-Cr –Ni-Si

WREK2-406

Simplex Ni-Cr –Ni-Si

WREKB-406 4~20mA output

Duplex Ni-Cr –Ni-Si

WREKB2-406

Simplex Ni-Cr –Ni-Si

WRCK-406         T Directly output

Duplex Ni-Cr –Ni-Si

WRCK2-406

Simplex Ni-Cr –Ni-Si

WRCKB-406 4~20mA output

Duplex Ni-Cr –Ni-Si

WRCKB2-406

Simplex Ni-Cr –Ni-Si

WRFK-406         J Directly output

Duplex Ni-Cr –Ni-Si

WRFK2-406

Simplex Ni-Cr –Ni-Si

WRFKB-406 4~20mA output

Duplex Ni-Cr –Ni-Si

WRFKB2-406

Simplex Ni-Cr –Ni-Si

WRMK-406         N Directly output

Duplex Ni-Cr –Ni-Si

WRMK2-406

Simplex Ni-Cr –Ni-Si

WRMKB-406 4~20mA output

Duplex Ni-Cr –Ni-Si

WRMKB2-406
 

Type

Model code

Graduation

Output

Wiring device

Simplex Ni-Cr –Ni-Si

WRNK-496         K

Directly output

With compensating wire

Duplex Ni-Cr –Ni-Si

WRNK2-496

Simplex Ni-Cr –Ni-Si

WREK-496         E

Duplex Ni-Cr –Ni-Si

WREK2-491

Simplex Ni-Cr –Ni-Si

WRCK-496         T

Duplex Ni-Cr –Ni-Si

WRCK2-496

Simplex Ni-Cr –Ni-Si

WRFK-496         J

Duplex Ni-Cr –Ni-Si

WRFK2-496

Simplex Ni-Cr –Ni-Si

WRMK-496         N

Duplex Ni-Cr –Ni-Si

WRMK2-496
 

Type

Model code

Graduation

Output

Wiring device

Simplex Ni-Cr –Ni-Si

WRNK-436         K

Directly output

Water proof type

Duplex Ni-Cr –Ni-Si

WRNK2-436

Simplex Ni-Cr –Ni-Si

WRNKB-436

4~20mA output

Duplex Ni-Cr –Ni-Si

WRNKB2-436

Simplex Ni-Cr –Ni-Si

WREK-436         E

Directly output

Duplex Ni-Cr –Ni-Si

WREK2-436

Simplex Ni-Cr –Ni-Si

WREKB-436

4~20mA output

Duplex Ni-Cr –Ni-Si

WREKB2-436

Simplex Ni-Cr –Ni-Si

WRCK-436         T

Directly output

Duplex Ni-Cr –Ni-Si

WRCK2-436

Simplex Ni-Cr –Ni-Si

WRCKB-436

4~20mA output

Duplex Ni-Cr –Ni-Si

WRCKB2-436

Simplex Ni-Cr –Ni-Si

WRFK-436         J

Directly output

Duplex Ni-Cr –Ni-Si

WRFK2-436

Simplex Ni-Cr –Ni-Si

WRFKB-436

4~20mA output

Duplex Ni-Cr –Ni-Si

WRFKB2-436

Simplex Ni-Cr –Ni-Si

WRMK-436         N

Directly output

Duplex Ni-Cr –Ni-Si

WRMK2-436

Simplex Ni-Cr –Ni-Si

WRMKB-436

4~20mA output

Duplex Ni-Cr –Ni-Si

WRMKB2-436

Installation diagram